

LSD4RF-3V930SDA

WS7300-P915 BR 端 Pro 版标准模组

WS7300-P915 BR 端 Pro 版标准模组(以下简称 BR 子板)是基于利尔达自主研发的 WS7300 系列模组设计的,主要用于实现 Wi-SUN 千点组网功能,以满足客户大规模组网需求。

前言 本公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,本公司有权对该文档进行更新。

版权申明 本文档版权属于本公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 © 利尔达科技集团,保留一切权利。

Copyright © Lierda Science & Technology Group Co.,Ltd

文件修订历史

版本	日期	变更描述
Rev01	2020-06-11	初始版本
Rev02	2020-07-21	完善规格参数、尺寸图、注意事项内容
Rev03	2020-08-05	增加引脚功能说明表格、调整参考设计电路
Rev04	2020-10-23	修改模块示意图、引脚功能说明表格及规格参数
Rev05	2021-01-05	修改产品名称

1 硬件框图

图 1 是 BR 子板硬件功能框图,其中天线接口形式为 IPX 插座;Root 模组为利尔达自主设计的 Wi-SUN Root 模块 (硬件型号:LSD4RF-3V930SD0);PCIE PORT 适配标准 MINI PCI Express 52PIN 插座尺寸。

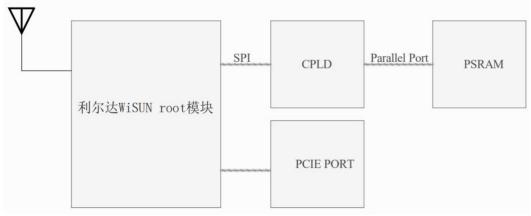


图 1 硬件框图

BR 子板外形示意图如图 2 所示。

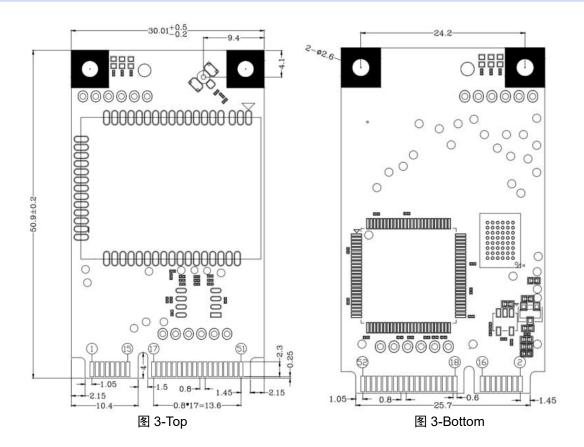
图 2 BR 子板外形示意图

2 规格参数

表 1 极限参数

主要参数	性能		备注
工安参数	最小值	最大值	一
电源电压(V)	-0.2	5.5	
存储温度(℃)	-40	85	

表 2 工作参数


		W Z	11 2 35	
主要参数	性能1			A7 334-
土安勿知	最小值	典型值	最大值	备注
工作电压 (V)	4	5	5.25	推荐使用5V
工作频段(MHz)	902	915	928	客户可自定义工作频率
发射电流(mA)	600	750	850	发射功率28-30.5dBm
接收电流(mA)	32	39	80	最大值是CPLD和PSRAM运行时的状态
工作温度(℃)	-40		85	
通信速率			300kbps	用户可编程自定义
天线接口		IPEX		
调制方式	OOK/GFSK/FSK/GMSK			
接口类型	MINI PCI Express		oress	52PIN
通讯协议	SPI/UART			
外形尺寸(mm)	50.95*30.2*4.6mm		6mm	-
I/0口高电平(V)	2.4	3.3	3.6	
I/0口低电平(V)			0.8	
PSRAM(Mbit)		64		

3 尺寸图及引脚定义

3.1 尺寸图

BR 子板详细尺寸如图 3 所示,该模块使用标准 MINI PCIE 接口尺寸(这里仅采用了 MINI PCIE 接口物理尺寸及部分引脚定义,其他引脚定义根据需求有所调整),为双面器件焊接,Bottom和 Top 两面器件最大高度分别为 1.5mm和 3.0mm。注意:这里的尺寸图主要是为了说明板子形状与尺寸,PCB 板上的器件位置仅作示意(如后期 PCB 板上器件位置变动,此处不再做更新说明)。

3.2 引脚定义

BR 子板 MINI PCIE 接口引脚定义如图 4 所示。

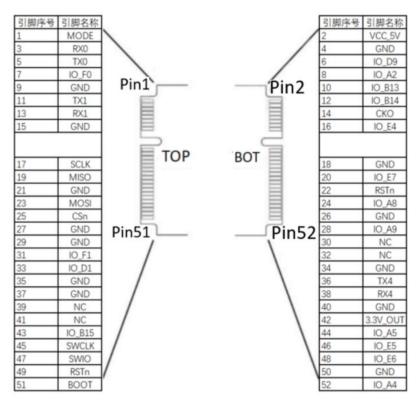


图 4 引脚定义

表 3 引脚功能说明

PIN	名称	描述		
1	MODE	模式选择,模块内部上拉 100kΩ,预留引脚,		
		内部悬空:		
		MODE=0: Debug mode		
	1100 511	MODE=1: Normal mode		
2	VCC_5V	模块电源电压		
3	RX0	UARTO 接收引脚,模块内部 10KΩ上拉		
5	TX0	UARTO 发送引脚		
11	TX1	UART1 发送引脚		
13	RX1	UART1 接收引脚,模块内部 10KΩ上拉		
14	СКО	内部时钟信号输出; 预留引脚, 内部悬空		
17	SCLK	SPI 时钟信号;预留引脚,内部悬空		
19	MISO	SPI 数据信号;预留引脚,内部悬空		
22、49	RSTn	模块复位信号,内部上拉 10kΩ,低电平复位有		
		效; PIN49 预留为 SWD 烧写接口复位,目前内		
		部为悬空,实际使用 PIN22 作为复位引脚		
23	MOSI	SPI 数据信号;预留引脚,内部悬空		
25	CSn	SPI 片选引脚; 预留引脚,内部悬空		
30、32、39、	NC	空引脚		
41				
36	TX4	UART4 发送引脚		
38	RX4	UART4 接收引脚		
42	3.3V_OUT	模块 3.3V 输出,可用于小电流负载 Imax<50mA		
45	SWCLK	SWD 时钟信号, 预留引脚,内部悬空		
47	SWIO	SWD 数据信号,预留引脚,内部悬空		
51	BOOT	启动方式选择,模块内部下拉 100kΩ;预留引		
		脚,内部悬空:		
		BOOT=0: 程序从 flash 启动		
		BOOT=1: 程序从 iROM 启动		
4、9、15、18、				
21、26、27、				
29、34、35、	GND	系统地		
37、40、50				
其他		通用 I/O 引脚		

4 典型应用电路

使用 Wi-SUN BR 子板用作组网最基本的硬件电路请参考图 5 所示,图中 BR 子板上的 UARTO (TXO、RXO) 为应用通信串口,RSTn 为模块复位引脚可在代码运行异常时用于复位系统,模块复位引脚有效电平是低电平,模块 RSTn 引脚内部存在上拉电阻(10K Ω)。

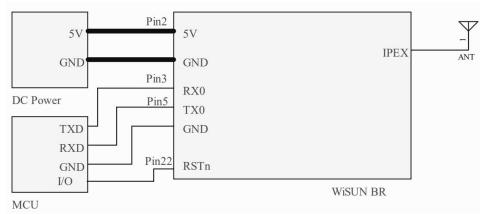


图 5 参考设计电路

5 注意事项

- 1) 模块天线输出接口阻抗为 50 Ω, 需要注意天线输入阻抗的匹配;
- 2) 模块安装在应用底板上后,如果需要在模块下方布局器件,需要注意模块Bottom面器件避让;
- 3) 模块在默认发射状态下电流消耗约为 750mA, 需要考虑到天线断开情况下阻抗失配时的电流可能会达到 1A, 注意模块供电电源的带载能力;
- 4) MODE、BOOT、RSTn 几个控制引脚模块内部已设置相应的上拉或下拉配置,如果连接至 MCU I/O,需要注意 I/O 状态配置;